Student Name:

Sheet 1

Verify the following formulas

$$
\int_{0}^{\infty} \frac{\mathrm{t}^{\mathrm{ac}-1}}{\left(1+\mathrm{t}^{\mathrm{c}}\right)^{\mathrm{a}+\mathrm{b}}} \mathrm{dt}=\frac{1}{\mathrm{c}} \beta(\mathrm{a}, \mathrm{~b}) \quad \int_{0}^{1} \mathrm{t}^{\mathrm{aq}-1}\left(1-\mathrm{t}^{\mathrm{q}}\right)^{\mathrm{b}-1} \mathrm{dt}=\frac{1}{\mathrm{q}} \beta(\mathrm{a}, \mathrm{~b})
$$

Student Name:

Sheet 2

Evaluate the following integrals

$$
\int_{0}^{1 / 2} t^{m-1} \ln (1 / 2 t) d t \quad \int_{0}^{\infty} a^{-m x^{n}} d x \quad \int_{0}^{\infty} x^{m} e^{-a x^{n}} d x
$$

Student Name:

Sheet 3

Evaluate the following integrals

$$
\int_{-\pi / 4}^{\pi / 4}(\sin \theta+\cos \theta)^{1 / 3} \mathrm{~d} \theta \quad \int_{0}^{\infty} \frac{\mathrm{t}^{2}}{1+\mathrm{t}^{4}} \mathrm{dt} \quad \int_{0}^{3} \frac{\mathrm{dt}}{\sqrt{3 \mathrm{t}-\mathrm{t}^{2}}}
$$

Student Name:

Sheet 4

Find $\mathrm{F}(\mathrm{s})$ of the following functions

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t})=\mathrm{e}^{-2.7 \mathrm{t}}[\cos (9.2 \mathrm{t}+3)]+\frac{\mathrm{ke}^{-\mathrm{k}^{2} / 4 \mathrm{t}}}{\sqrt{4 \pi \mathrm{t}^{3}}}+\frac{\mathrm{e}^{-\mathrm{k}^{2} / 4 \mathrm{t}}}{\sqrt{\pi \mathrm{t}}} \\
& \mathrm{~g}(\mathrm{t})=\mathrm{U}(\mathrm{t}-3)\left[-\mathrm{e}^{5 \mathrm{t}}+2+3 \mathrm{t}^{2}\right]+5 \sin (5 \mathrm{t}+8) \mathrm{U}(\mathrm{t}-\pi) \\
& \mathrm{h}(\mathrm{t})=\mathrm{t} \sin 3 \mathrm{t} \cosh 2 \mathrm{t}+4 \sin ^{2} 3 \mathrm{t}
\end{aligned}
$$

Date: Grade:

Student Name:

Sheet 5

Find inverse Laplace of the following functions
$F(s)=\frac{2-3 \mathrm{se}^{-s}+4 \mathrm{e}^{-3 \mathrm{~s}}}{\mathrm{~s}(\mathrm{~s}+1)}+\frac{\mathrm{s}+3}{\left(\mathrm{~s}^{2}+5 \mathrm{~s}+3\right)}$
$\mathrm{G}(\mathrm{s})=\frac{5 \mathrm{~s}^{2}+8 \mathrm{~s}-5}{\mathrm{~s}^{2}\left(\mathrm{~s}^{2}+2 \mathrm{~s}+5\right)}+\frac{9 \mathrm{~s}+4}{(\mathrm{~s}+3)^{3}}$
$\mathrm{Q}(\mathrm{s})=\frac{25}{\mathrm{~s}^{3}\left(\mathrm{~s}^{2}+4 \mathrm{~s}+5\right)}+\frac{9 \mathrm{~s}+4}{(\mathrm{~s}-3)^{2}+6}$

Date:
Grade:

Student Name:

Sheet 6

Solve the following differential equations using Laplace
$\mathrm{y}^{\prime}+2 \mathrm{y}^{\prime}-3 \mathrm{y}=\mathrm{U}(\mathrm{t}-2)(\mathrm{t}-1), \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=-1$
$y^{\prime}+y=f(t), y(\pi / 4)=\pi / 2, y^{`}(\pi / 4)=2-\sqrt{2}$, where $f(t)$ is given by indicated graph $\quad \mathrm{f}(\mathrm{t})$

Date:
Grade:

Student Name:

Sheet 7

Find the harmonic conjugate for the following

$$
u(x, y)=x^{2}-y^{2}+y \quad v(x, y)=2 x y+3 y
$$

Date:
Grade:

Student Name:

Sheet 8

If $f(z)=e^{x} \cos (a y)+i e^{x} \sin (y-b)$ is differentiable at every point, then find a and b.

Date: Grade:

Student Name:

Sheet 9

Evaluate the following integrals
$\int_{c} \frac{\cos (z)}{z^{2}-6 z+5} d z, \quad c$ is the circle $z=4$

$$
\begin{array}{ll}
\int_{c} \frac{z^{3}+5 z+7}{(z-i)^{2}} d z, & c: z-2+z+2=6 \\
\int_{c} \frac{d z}{(z-4)^{3}}, & c: x=3 \operatorname{cost}, y=2 \operatorname{sint}
\end{array}
$$

Student Name:

Sheet 10

Find residues of $f(z)=\frac{z^{3}+5 z+7}{(z-1)^{2}\left(z^{2}-3 z-4\right)}$ using Residue theorem Laurent series.

Student Name:

Sheet 11

Find Parabolic equation that fit $(3,5),(15,114),(19,201),(23,330)$
Find the constants of the curve $y=a \cos x+b \ln x+c e^{x}$ that fit $(1,3)$, $(5,14),(19,101)$

Date:
Grade:

Student Name:

Grade:

Student Name:

Sheet 12

Solve the following D.E. using series solution about $x=x_{0}$

$$
y^{\prime \prime}-x y=x+4 \quad y^{\prime \prime}+x y^{`}=x^{2}+2
$$

Student Name:

Grade:

Student Name:

Sheet 13

Solve the following D.E. using series solution about $\mathrm{x}=0$

$$
2 x^{2} y^{\prime \prime}-x y^{`}+\left(1+x^{2}\right) y=0 \quad 9 x^{2} y^{\prime}-(4+x) y=0
$$

